. C O ] 2 6 Ju n 20 01 RESTRICTED PERMUTATIONS AND CHEBYSHEV

نویسندگان

  • Alek Vainshtein
  • ALEK VAINSHTEIN
چکیده

We study generating functions for the number of permutations in Sn subject to two restrictions. One of the restrictions belongs to S3, while the other to Sk. It turns out that in a large variety of cases the answer can be expressed via Chebyshev polynomials of the second kind. 2000 Mathematics Subject Classification: Primary 05A05, 05A15; Secondary 30B70, 42C05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 01 08 04 3 v 1 [ m at h . C O ] 6 A ug 2 00 1 Restricted set of patterns , continued fractions , and Chebyshev polynomials

We study generating functions for the number of permutations in Sn subject to set of restrictions. One of the restrictions belongs to S3, while the others to Sk. It turns out that in a large variety of cases the answer can be expressed via continued fractions, and Chebyshev polynomials of the second kind. 2001 Mathematics Subject Classification: Primary 05A05, 05A15; Secondary 30B70 42C05

متن کامل

O ct 2 00 6 RESTRICTED MOTZKIN PERMUTATIONS , MOTZKIN PATHS , CONTINUED FRACTIONS , AND CHEBYSHEV POLYNOMIALS

We say that a permutation π is a Motzkin permutation if it avoids 132 and there do not exist a < b such that π a < π b < π b+1. We study the distribution of several statistics in Motzkin permutations, including the length of the longest increasing and decreasing subsequences and the number of rises and descents. We also enumerate Motzkin permutations with additional restrictions, and study the ...

متن کامل

2 00 2 Restricted Permutations and Chebyshev Polynomials

We study generating functions for the number of permutations in S n subject to two restrictions. One of the restrictions belongs to S 3 , while the other belongs to S k. It turns out that in a large variety of cases the answer can be expressed via Chebyshev polynomials of the second kind.

متن کامل

6 D ec 1 99 9 RESTRICTED PERMUTATIONS , CONTINUED FRACTIONS , AND CHEBYSHEV POLYNOMIALS

Let fr n (k) be the number of 132-avoiding permutations on n letters that contain exactly r occurrences of 12 . . . k, and let Fr(x; k) and F (x, y; k) be the generating functions defined by Fr(x; k) = ∑ n>0 f r n (k)xn and F (x, y; k) = ∑ r>0 Fr(x; k)y r . We find an explcit expression for F (x, y; k) in the form of a continued fraction. This allows us to express Fr(x; k) for 1 6 r 6 k via Che...

متن کامل

Restricted Permutations, Continued Fractions, and Chebyshev Polynomials

Let fr n(k) be the number of 132-avoiding permutations on n letters that contain exactly r occurrences of 12 . . . k, and let Fr(x; k) and F (x, y; k) be the generating functions defined by Fr(x; k) = P n>0 f r n(k)x n and F (x, y; k) = P r>0 Fr(x; k)y r. We find an explicit expression for F (x, y; k) in the form of a continued fraction. This allows us to express Fr(x; k) for 1 6 r 6 k via Cheb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002